MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. 6360 Aluminum

S32615 stainless steel belongs to the iron alloys classification, while 6360 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is 6360 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 28
9.0 to 18
Fatigue Strength, MPa 180
31 to 67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 400
76 to 130
Tensile Strength: Ultimate (UTS), MPa 620
120 to 220
Tensile Strength: Yield (Proof), MPa 250
57 to 170

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
630
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 160
24 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
13 to 23
Strength to Weight: Bending, points 21
20 to 30
Thermal Shock Resistance, points 15
5.5 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
97.8 to 99.3
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0 to 0.050
Copper (Cu), % 1.5 to 2.5
0 to 0.15
Iron (Fe), % 46.4 to 57.9
0.1 to 0.3
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 2.0
0.020 to 0.15
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
0.35 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15