MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. EN AC-44500 Aluminum

S32615 stainless steel belongs to the iron alloys classification, while EN AC-44500 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is EN AC-44500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
68
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 28
1.1
Fatigue Strength, MPa 180
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 620
270
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 370
570
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1350
590
Melting Onset (Solidus), °C 1310
580
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
21

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 7.6
2.5
Embodied Carbon, kg CO2/kg material 4.4
7.7
Embodied Energy, MJ/kg 63
140
Embodied Water, L/kg 170
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 23
29
Strength to Weight: Bending, points 21
36
Thermal Shock Resistance, points 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
83.7 to 89.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0
Copper (Cu), % 1.5 to 2.5
0 to 0.2
Iron (Fe), % 46.4 to 57.9
0 to 1.0
Magnesium (Mg), % 0
0 to 0.4
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.25