MakeItFrom.com
Menu (ESC)

S32750 Stainless Steel vs. Grade Ti-Pd18 Titanium

S32750 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32750 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
320
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 17
17
Fatigue Strength, MPa 360
350
Poisson's Ratio 0.27
0.32
Rockwell C Hardness 28
34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 860
710
Tensile Strength: Yield (Proof), MPa 590
540

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1450
1640
Melting Onset (Solidus), °C 1400
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
8.2
Thermal Expansion, µm/m-K 12
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.1
41
Embodied Energy, MJ/kg 56
670
Embodied Water, L/kg 180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 860
1380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31
44
Strength to Weight: Bending, points 26
39
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 25
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.1 to 66.8
0 to 0.25
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.050
Nitrogen (N), % 0.24 to 0.32
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4