MakeItFrom.com
Menu (ESC)

S32750 Stainless Steel vs. C23000 Brass

S32750 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S32750 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 17
2.9 to 47
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
42
Shear Strength, MPa 530
220 to 340
Tensile Strength: Ultimate (UTS), MPa 860
280 to 590
Tensile Strength: Yield (Proof), MPa 590
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
39

Otherwise Unclassified Properties

Base Metal Price, % relative 21
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 4.1
2.6
Embodied Energy, MJ/kg 56
43
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 860
31 to 1040
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31
8.9 to 19
Strength to Weight: Bending, points 26
11 to 18
Thermal Diffusivity, mm2/s 4.0
48
Thermal Shock Resistance, points 25
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.5
84 to 86
Iron (Fe), % 58.1 to 66.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.24 to 0.32
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2