MakeItFrom.com
Menu (ESC)

S32750 Stainless Steel vs. C82200 Copper

S32750 stainless steel belongs to the iron alloys classification, while C82200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32750 stainless steel and the bottom bar is C82200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 17
8.0 to 20
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
44
Tensile Strength: Ultimate (UTS), MPa 860
390 to 660
Tensile Strength: Yield (Proof), MPa 590
210 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1100
230
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
180
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
46

Otherwise Unclassified Properties

Base Metal Price, % relative 21
55
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.1
4.8
Embodied Energy, MJ/kg 56
74
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
49 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 860
180 to 1130
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 31
12 to 20
Strength to Weight: Bending, points 26
13 to 19
Thermal Diffusivity, mm2/s 4.0
53
Thermal Shock Resistance, points 25
14 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Beryllium (Be), % 0
0.35 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.5
97.4 to 98.7
Iron (Fe), % 58.1 to 66.8
0
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 6.0 to 8.0
1.0 to 2.0
Nitrogen (N), % 0.24 to 0.32
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0
Residuals, % 0
0 to 0.5