MakeItFrom.com
Menu (ESC)

S32750 Stainless Steel vs. S44401 Stainless Steel

Both S32750 stainless steel and S44401 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32750 stainless steel and the bottom bar is S44401 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 17
21
Fatigue Strength, MPa 360
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
78
Shear Strength, MPa 530
300
Tensile Strength: Ultimate (UTS), MPa 860
480
Tensile Strength: Yield (Proof), MPa 590
300

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
510
Maximum Temperature: Mechanical, °C 1100
930
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 21
12
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.9
Embodied Energy, MJ/kg 56
40
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 43
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
90
Resilience: Unit (Modulus of Resilience), kJ/m3 860
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
17
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 4.0
5.9
Thermal Shock Resistance, points 25
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 24 to 26
17.5 to 19.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 58.1 to 66.8
75.1 to 80.6
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 3.0 to 5.0
1.8 to 2.5
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0.24 to 0.32
0 to 0.035
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8