MakeItFrom.com
Menu (ESC)

S32803 Stainless Steel vs. C42200 Brass

S32803 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32803 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 18
2.0 to 46
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 86
56 to 87
Shear Modulus, GPa 81
42
Shear Strength, MPa 420
210 to 350
Tensile Strength: Ultimate (UTS), MPa 680
300 to 610
Tensile Strength: Yield (Proof), MPa 560
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
32

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 760
49 to 1460
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
9.5 to 19
Strength to Weight: Bending, points 22
11 to 18
Thermal Diffusivity, mm2/s 4.4
39
Thermal Shock Resistance, points 22
10 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 28 to 29
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 62.9 to 67.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 3.0 to 4.0
0
Niobium (Nb), % 0.15 to 0.5
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.020
0 to 0.35
Silicon (Si), % 0 to 0.55
0
Sulfur (S), % 0 to 0.0035
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5