MakeItFrom.com
Menu (ESC)

S32808 Stainless Steel vs. EN 1.5535 Steel

Both S32808 stainless steel and EN 1.5535 steel are iron alloys. They have 61% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32808 stainless steel and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
130 to 180
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 17
11 to 22
Fatigue Strength, MPa 350
210 to 320
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 480
320 to 370
Tensile Strength: Ultimate (UTS), MPa 780
450 to 1490
Tensile Strength: Yield (Proof), MPa 570
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
50
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.4
Embodied Energy, MJ/kg 57
19
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 790
240 to 680
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
16 to 53
Strength to Weight: Bending, points 24
17 to 37
Thermal Diffusivity, mm2/s 3.8
13
Thermal Shock Resistance, points 21
13 to 44

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.030
0.2 to 0.25
Chromium (Cr), % 27 to 27.9
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 58.1 to 62.8
97.6 to 98.9
Manganese (Mn), % 0 to 1.1
0.9 to 1.2
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 7.0 to 8.2
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.025
Tungsten (W), % 2.1 to 2.5
0