MakeItFrom.com
Menu (ESC)

S32808 Stainless Steel vs. C68400 Brass

S32808 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32808 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
150
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 17
18
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 81
41
Shear Strength, MPa 480
330
Tensile Strength: Ultimate (UTS), MPa 780
540
Tensile Strength: Yield (Proof), MPa 570
310

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1470
840
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
66
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
99

Otherwise Unclassified Properties

Base Metal Price, % relative 24
23
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.0
2.7
Embodied Energy, MJ/kg 57
47
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
81
Resilience: Unit (Modulus of Resilience), kJ/m3 790
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
19
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 3.8
21
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 27 to 27.9
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 58.1 to 62.8
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.1
0.2 to 1.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 7.0 to 8.2
0 to 0.5
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0.030 to 0.3
Silicon (Si), % 0 to 0.5
1.5 to 2.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.5
Tungsten (W), % 2.1 to 2.5
0
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5