MakeItFrom.com
Menu (ESC)

S32906 Stainless Steel vs. 7076 Aluminum

S32906 stainless steel belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32906 stainless steel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
160
Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 28
6.2
Fatigue Strength, MPa 460
170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 81
27
Shear Strength, MPa 550
310
Tensile Strength: Ultimate (UTS), MPa 850
530
Tensile Strength: Yield (Proof), MPa 620
460

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
460
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.7
8.0
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
31
Resilience: Unit (Modulus of Resilience), kJ/m3 950
1510
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 30
49
Strength to Weight: Bending, points 26
48
Thermal Diffusivity, mm2/s 3.6
54
Thermal Shock Resistance, points 23
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
86.9 to 91.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
0.3 to 1.0
Iron (Fe), % 56.6 to 63.6
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0.8 to 1.5
0.3 to 0.8
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15