MakeItFrom.com
Menu (ESC)

S32906 Stainless Steel vs. EN AC-44200 Aluminum

S32906 stainless steel belongs to the iron alloys classification, while EN AC-44200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32906 stainless steel and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
60
Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 28
6.2
Fatigue Strength, MPa 460
63
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 850
180
Tensile Strength: Yield (Proof), MPa 620
86

Thermal Properties

Latent Heat of Fusion, J/g 300
570
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.7
2.5
Embodied Carbon, kg CO2/kg material 3.7
7.7
Embodied Energy, MJ/kg 52
140
Embodied Water, L/kg 190
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 950
51
Stiffness to Weight: Axial, points 15
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 30
20
Strength to Weight: Bending, points 26
28
Thermal Diffusivity, mm2/s 3.6
59
Thermal Shock Resistance, points 23
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
85.2 to 89.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
0 to 0.050
Iron (Fe), % 56.6 to 63.6
0 to 0.55
Manganese (Mn), % 0.8 to 1.5
0 to 0.35
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15