MakeItFrom.com
Menu (ESC)

S32906 Stainless Steel vs. C92800 Bronze

S32906 stainless steel belongs to the iron alloys classification, while C92800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S32906 stainless steel and the bottom bar is C92800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 28
1.0
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 81
37
Tensile Strength: Ultimate (UTS), MPa 850
280
Tensile Strength: Yield (Proof), MPa 620
210

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1430
960
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
350
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 52
67
Embodied Water, L/kg 190
430

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 950
210
Stiffness to Weight: Axial, points 15
6.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30
8.8
Strength to Weight: Bending, points 26
11
Thermal Shock Resistance, points 23
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.8
78 to 82
Iron (Fe), % 56.6 to 63.6
0 to 0.2
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0.8 to 1.5
0
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
0 to 0.8
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.7