MakeItFrom.com
Menu (ESC)

S32906 Stainless Steel vs. C95520 Bronze

S32906 stainless steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32906 stainless steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
280
Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 28
2.6
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
44
Tensile Strength: Ultimate (UTS), MPa 850
970
Tensile Strength: Yield (Proof), MPa 620
530

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
240
Melting Completion (Liquidus), °C 1430
1070
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 13
40
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 20
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.7
3.6
Embodied Energy, MJ/kg 52
58
Embodied Water, L/kg 190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
21
Resilience: Unit (Modulus of Resilience), kJ/m3 950
1210
Stiffness to Weight: Axial, points 15
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 30
33
Strength to Weight: Bending, points 26
27
Thermal Diffusivity, mm2/s 3.6
11
Thermal Shock Resistance, points 23
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.8
74.5 to 81.3
Iron (Fe), % 56.6 to 63.6
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.8 to 1.5
0 to 1.5
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
4.2 to 6.0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5