MakeItFrom.com
Menu (ESC)

S33550 Stainless Steel vs. C14200 Copper

S33550 stainless steel belongs to the iron alloys classification, while C14200 copper belongs to the copper alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S33550 stainless steel and the bottom bar is C14200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
8.0 to 45
Fatigue Strength, MPa 270
76 to 130
Poisson's Ratio 0.27
0.34
Rockwell B Hardness 82
35 to 60
Shear Modulus, GPa 79
43
Shear Strength, MPa 470
150 to 200
Tensile Strength: Ultimate (UTS), MPa 680
220 to 370
Tensile Strength: Yield (Proof), MPa 310
75 to 340

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1360
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
190
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
45

Otherwise Unclassified Properties

Base Metal Price, % relative 24
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.3
2.6
Embodied Energy, MJ/kg 61
41
Embodied Water, L/kg 190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
29 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 250
24 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
6.8 to 11
Strength to Weight: Bending, points 22
9.1 to 13
Thermal Diffusivity, mm2/s 3.9
56
Thermal Shock Resistance, points 15
7.9 to 13

Alloy Composition

Arsenic (As), % 0
0.15 to 0.5
Carbon (C), % 0.040 to 0.1
0
Cerium (Ce), % 0.025 to 0.070
0
Chromium (Cr), % 25 to 28
0
Copper (Cu), % 0
99.4 to 99.835
Iron (Fe), % 48.8 to 58.2
0
Lanthanum (La), % 0.025 to 0.070
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 16.5 to 20
0
Niobium (Nb), % 0.050 to 0.15
0
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0