MakeItFrom.com
Menu (ESC)

S39274 Stainless Steel vs. 6106 Aluminum

S39274 stainless steel belongs to the iron alloys classification, while 6106 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S39274 stainless steel and the bottom bar is 6106 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 17
9.1
Fatigue Strength, MPa 380
88
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 560
170
Tensile Strength: Ultimate (UTS), MPa 900
290
Tensile Strength: Yield (Proof), MPa 620
220

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1480
660
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
160

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 4.3
8.3
Embodied Energy, MJ/kg 60
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
24
Resilience: Unit (Modulus of Resilience), kJ/m3 940
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 32
29
Strength to Weight: Bending, points 26
35
Thermal Diffusivity, mm2/s 4.2
78
Thermal Shock Resistance, points 25
13

Alloy Composition

Aluminum (Al), % 0
97.2 to 99.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0 to 0.2
Copper (Cu), % 0.2 to 0.8
0 to 0.25
Iron (Fe), % 57 to 65.6
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.050 to 0.2
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.24 to 0.32
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0.3 to 0.6
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15