MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. C85500 Brass

S39277 stainless steel belongs to the iron alloys classification, while C85500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
40
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 930
410
Tensile Strength: Yield (Proof), MPa 660
160

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1460
900
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 23
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.2
2.7
Embodied Energy, MJ/kg 59
46
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 33
14
Strength to Weight: Bending, points 27
15
Thermal Diffusivity, mm2/s 4.2
38
Thermal Shock Resistance, points 26
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 1.2 to 2.0
59 to 63
Iron (Fe), % 56.8 to 64.3
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.8
0 to 0.2
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
0 to 0.2
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.0020
0
Tin (Sn), % 0
0 to 0.2
Tungsten (W), % 0.8 to 1.2
0
Zinc (Zn), % 0
35.1 to 41
Residuals, % 0
0 to 0.9