MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. C92200 Bronze

S39277 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
25
Fatigue Strength, MPa 480
76
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 930
280
Tensile Strength: Yield (Proof), MPa 660
140

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
990
Melting Onset (Solidus), °C 1410
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
70
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 4.2
3.2
Embodied Energy, MJ/kg 59
52
Embodied Water, L/kg 180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
58
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 33
8.9
Strength to Weight: Bending, points 27
11
Thermal Diffusivity, mm2/s 4.2
21
Thermal Shock Resistance, points 26
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 1.2 to 2.0
86 to 90
Iron (Fe), % 56.8 to 64.3
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
0 to 1.0
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 1.5
Silicon (Si), % 0 to 0.8
0 to 0.0050
Sulfur (S), % 0 to 0.0020
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Tungsten (W), % 0.8 to 1.2
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7