MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. C95820 Bronze

S40910 stainless steel belongs to the iron alloys classification, while C95820 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is C95820 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 430
730
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 710
230
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 26
38
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.0
3.5
Embodied Energy, MJ/kg 28
56
Embodied Water, L/kg 94
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
86
Resilience: Unit (Modulus of Resilience), kJ/m3 94
400
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 16
25

Alloy Composition

Aluminum (Al), % 0
9.0 to 10
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
77.5 to 82.5
Iron (Fe), % 85 to 89.5
4.0 to 5.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0 to 0.5
4.5 to 5.8
Niobium (Nb), % 0 to 0.17
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.8