MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. AISI 442 Stainless Steel

Both S40930 stainless steel and AISI 442 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is AISI 442 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 130
210
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 76
83
Shear Modulus, GPa 75
78
Shear Strength, MPa 270
370
Tensile Strength: Ultimate (UTS), MPa 430
580
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 460
420
Maximum Temperature: Mechanical, °C 710
960
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
22
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
10
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.3
2.3
Embodied Energy, MJ/kg 32
32
Embodied Water, L/kg 94
130

Common Calculations

PREN (Pitting Resistance) 11
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.7
5.8
Thermal Shock Resistance, points 16
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 10.5 to 11.7
18 to 23
Iron (Fe), % 84.7 to 89.4
74.1 to 82
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Niobium (Nb), % 0.080 to 0.75
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.040
Titanium (Ti), % 0.050 to 0.2
0