MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. ASTM A182 Grade F92

Both S40930 stainless steel and ASTM A182 grade F92 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
22
Fatigue Strength, MPa 130
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 270
440
Tensile Strength: Ultimate (UTS), MPa 430
690
Tensile Strength: Yield (Proof), MPa 190
500

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 710
590
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1410
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
26
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 32
40
Embodied Water, L/kg 94
89

Common Calculations

PREN (Pitting Resistance) 11
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
140
Resilience: Unit (Modulus of Resilience), kJ/m3 94
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
6.9
Thermal Shock Resistance, points 16
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 10.5 to 11.7
8.5 to 9.5
Iron (Fe), % 84.7 to 89.4
85.8 to 89.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0.080 to 0.75
0.040 to 0.090
Nitrogen (N), % 0 to 0.030
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0.050 to 0.2
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010