MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. EN 1.4542 Stainless Steel

Both S40930 stainless steel and EN 1.4542 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
5.7 to 20
Fatigue Strength, MPa 130
370 to 640
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 270
550 to 860
Tensile Strength: Ultimate (UTS), MPa 430
880 to 1470
Tensile Strength: Yield (Proof), MPa 190
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 460
440
Maximum Temperature: Mechanical, °C 710
860
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
16
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 32
39
Embodied Water, L/kg 94
130

Common Calculations

PREN (Pitting Resistance) 11
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 94
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
31 to 52
Strength to Weight: Bending, points 16
26 to 37
Thermal Diffusivity, mm2/s 6.7
4.3
Thermal Shock Resistance, points 16
29 to 49

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 10.5 to 11.7
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 84.7 to 89.4
69.6 to 79
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.5
3.0 to 5.0
Niobium (Nb), % 0.080 to 0.75
0 to 0.45
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.050 to 0.2
0