MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. EN 1.4736 Stainless Steel

Both S40930 stainless steel and EN 1.4736 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
28
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 270
370
Tensile Strength: Ultimate (UTS), MPa 430
580
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 460
500
Maximum Temperature: Mechanical, °C 710
1000
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
9.0
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 2.3
2.4
Embodied Energy, MJ/kg 32
35
Embodied Water, L/kg 94
140

Common Calculations

PREN (Pitting Resistance) 11
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
140
Resilience: Unit (Modulus of Resilience), kJ/m3 94
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.7
5.6
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0 to 0.030
0 to 0.040
Chromium (Cr), % 10.5 to 11.7
17 to 18
Iron (Fe), % 84.7 to 89.4
77 to 81.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.080 to 0.75
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.050 to 0.2
0.2 to 0.8