MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. C51000 Bronze

S40930 stainless steel belongs to the iron alloys classification, while C51000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
2.7 to 64
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 76
26 to 97
Shear Modulus, GPa 75
42
Shear Strength, MPa 270
250 to 460
Tensile Strength: Ultimate (UTS), MPa 430
330 to 780
Tensile Strength: Yield (Proof), MPa 190
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 710
190
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
77
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
18
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
18

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
33
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.3
3.1
Embodied Energy, MJ/kg 32
50
Embodied Water, L/kg 94
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 94
75 to 2490
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 16
10 to 25
Strength to Weight: Bending, points 16
12 to 21
Thermal Diffusivity, mm2/s 6.7
23
Thermal Shock Resistance, points 16
12 to 28

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 84.7 to 89.4
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.080 to 0.75
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
4.5 to 5.8
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5