MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. S44660 Stainless Steel

Both S40930 stainless steel and S44660 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
20
Fatigue Strength, MPa 130
330
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 76
88
Shear Modulus, GPa 75
81
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 430
660
Tensile Strength: Yield (Proof), MPa 190
510

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 460
640
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
17
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
21
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.3
4.3
Embodied Energy, MJ/kg 32
61
Embodied Water, L/kg 94
180

Common Calculations

PREN (Pitting Resistance) 11
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
120
Resilience: Unit (Modulus of Resilience), kJ/m3 94
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.7
4.5
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 11.7
25 to 28
Iron (Fe), % 84.7 to 89.4
60.4 to 71
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
1.0 to 3.5
Niobium (Nb), % 0.080 to 0.75
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.050 to 0.2
0.2 to 1.0