MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. B535.0 Aluminum

S40975 stainless steel belongs to the iron alloys classification, while B535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
65
Elastic (Young's, Tensile) Modulus, GPa 190
66
Elongation at Break, % 22
10
Fatigue Strength, MPa 210
62
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Shear Strength, MPa 290
210
Tensile Strength: Ultimate (UTS), MPa 460
260
Tensile Strength: Yield (Proof), MPa 310
130

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 26
96
Thermal Expansion, µm/m-K 10
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
82

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.0
9.4
Embodied Energy, MJ/kg 28
160
Embodied Water, L/kg 95
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
22
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 17
28
Strength to Weight: Bending, points 17
35
Thermal Diffusivity, mm2/s 7.0
40
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
91.7 to 93.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 84.4 to 89
0 to 0.15
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 0.5 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.75
0.1 to 0.25
Residuals, % 0
0 to 0.15