MakeItFrom.com
Menu (ESC)

S40977 Stainless Steel vs. C83300 Brass

S40977 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S40977 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
35
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 510
220
Tensile Strength: Yield (Proof), MPa 310
69

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 720
180
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
160
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
32
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
33

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.9
2.7
Embodied Energy, MJ/kg 27
44
Embodied Water, L/kg 97
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
60
Resilience: Unit (Modulus of Resilience), kJ/m3 250
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
6.9
Strength to Weight: Bending, points 18
9.2
Thermal Diffusivity, mm2/s 6.7
48
Thermal Shock Resistance, points 18
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 83.9 to 89.2
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0.3 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7