MakeItFrom.com
Menu (ESC)

S41050 Stainless Steel vs. C11300 Copper

S41050 stainless steel belongs to the iron alloys classification, while C11300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S41050 stainless steel and the bottom bar is C11300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
2.3 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 300
160 to 240
Tensile Strength: Ultimate (UTS), MPa 470
230 to 410
Tensile Strength: Yield (Proof), MPa 230
77 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 720
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
390
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
32
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 27
42
Embodied Water, L/kg 97
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
8.5 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 140
25 to 690
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
7.2 to 13
Strength to Weight: Bending, points 17
9.4 to 14
Thermal Diffusivity, mm2/s 7.2
110
Thermal Shock Resistance, points 17
8.2 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
99.85 to 99.973
Iron (Fe), % 84.2 to 88.9
0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0.6 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.027 to 0.050
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.1