MakeItFrom.com
Menu (ESC)

S41050 Stainless Steel vs. C68700 Brass

S41050 stainless steel belongs to the iron alloys classification, while C68700 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S41050 stainless steel and the bottom bar is C68700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 470
390
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 720
160
Melting Completion (Liquidus), °C 1440
970
Melting Onset (Solidus), °C 1400
930
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 27
100
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
25

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 27
46
Embodied Water, L/kg 97
340

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
90
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
13
Strength to Weight: Bending, points 17
14
Thermal Diffusivity, mm2/s 7.2
30
Thermal Shock Resistance, points 17
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
1.8 to 2.5
Arsenic (As), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
76 to 79
Iron (Fe), % 84.2 to 88.9
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0.6 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
17.8 to 22.2
Residuals, % 0
0 to 0.5