MakeItFrom.com
Menu (ESC)

S41050 Stainless Steel vs. C91000 Bronze

S41050 stainless steel belongs to the iron alloys classification, while C91000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S41050 stainless steel and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
7.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 470
230
Tensile Strength: Yield (Proof), MPa 230
150

Thermal Properties

Latent Heat of Fusion, J/g 270
180
Maximum Temperature: Mechanical, °C 720
160
Melting Completion (Liquidus), °C 1440
960
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 27
64
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
37
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.9
4.1
Embodied Energy, MJ/kg 27
67
Embodied Water, L/kg 97
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
14
Resilience: Unit (Modulus of Resilience), kJ/m3 140
100
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
7.5
Strength to Weight: Bending, points 17
9.7
Thermal Diffusivity, mm2/s 7.2
20
Thermal Shock Resistance, points 17
8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 84.2 to 88.9
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0.6 to 1.1
0 to 0.8
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
14 to 16
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.6