MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. Titanium 4-4-2

S41425 stainless steel belongs to the iron alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
10
Fatigue Strength, MPa 450
590 to 620
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
20
Shear Modulus, GPa 77
42
Shear Strength, MPa 570
690 to 750
Tensile Strength: Ultimate (UTS), MPa 920
1150 to 1250
Tensile Strength: Yield (Proof), MPa 750
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 810
310
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 16
6.7
Thermal Expansion, µm/m-K 10
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
39
Density, g/cm3 7.9
4.7
Embodied Carbon, kg CO2/kg material 2.9
30
Embodied Energy, MJ/kg 40
480
Embodied Water, L/kg 120
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
4700 to 5160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 33
68 to 74
Strength to Weight: Bending, points 27
52 to 55
Thermal Diffusivity, mm2/s 4.4
2.6
Thermal Shock Resistance, points 33
86 to 93

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 12 to 15
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 74 to 81.9
0 to 0.2
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 1.5 to 2.0
3.0 to 5.0
Nickel (Ni), % 4.0 to 7.0
0
Nitrogen (N), % 0.060 to 0.12
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.3 to 0.7
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4