MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. C15500 Copper

S41425 stainless steel belongs to the iron alloys classification, while C15500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
3.0 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 570
190 to 320
Tensile Strength: Ultimate (UTS), MPa 920
280 to 550
Tensile Strength: Yield (Proof), MPa 750
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 810
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
350
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
91

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 120
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
72 to 1210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 33
8.6 to 17
Strength to Weight: Bending, points 27
11 to 17
Thermal Diffusivity, mm2/s 4.4
100
Thermal Shock Resistance, points 33
9.8 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 15
0
Copper (Cu), % 0 to 0.3
99.75 to 99.853
Iron (Fe), % 74 to 81.9
0
Magnesium (Mg), % 0
0.080 to 0.13
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 4.0 to 7.0
0
Nitrogen (N), % 0.060 to 0.12
0
Phosphorus (P), % 0 to 0.020
0.040 to 0.080
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.0050
0
Residuals, % 0
0 to 0.2