MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. C84400 Valve Metal

S41425 stainless steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 17
19
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 920
230
Tensile Strength: Yield (Proof), MPa 750
110

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 810
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 16
72
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
17

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 120
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
36
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
58
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 33
7.2
Strength to Weight: Bending, points 27
9.4
Thermal Diffusivity, mm2/s 4.4
22
Thermal Shock Resistance, points 33
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 15
0
Copper (Cu), % 0 to 0.3
78 to 82
Iron (Fe), % 74 to 81.9
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 4.0 to 7.0
0 to 1.0
Nitrogen (N), % 0.060 to 0.12
0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.0050
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7