MakeItFrom.com
Menu (ESC)

S42030 Stainless Steel vs. C82700 Copper

S42030 stainless steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S42030 stainless steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 16
1.8
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
46
Tensile Strength: Ultimate (UTS), MPa 670
1200
Tensile Strength: Yield (Proof), MPa 410
1020

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 780
300
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 28
130
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
21

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.5
12
Embodied Energy, MJ/kg 34
180
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
21
Resilience: Unit (Modulus of Resilience), kJ/m3 440
4260
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
38
Strength to Weight: Bending, points 22
29
Thermal Diffusivity, mm2/s 7.7
39
Thermal Shock Resistance, points 24
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 12 to 14
0 to 0.090
Copper (Cu), % 2.0 to 3.0
94.6 to 96.7
Iron (Fe), % 77.6 to 85
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.0 to 3.0
0
Nickel (Ni), % 0
1.0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5