MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. EN AC-51500 Aluminum

S42035 stainless steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
80
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 18
5.6
Fatigue Strength, MPa 260
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 630
280
Tensile Strength: Yield (Proof), MPa 430
160

Thermal Properties

Latent Heat of Fusion, J/g 280
430
Maximum Temperature: Mechanical, °C 810
170
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 27
120
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.4
9.0
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
13
Resilience: Unit (Modulus of Resilience), kJ/m3 460
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 21
36
Thermal Diffusivity, mm2/s 7.2
49
Thermal Shock Resistance, points 22
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 15.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 78.1 to 85
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
1.8 to 2.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.3 to 0.5
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15