MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. N08801 Stainless Steel

Both S42035 stainless steel and N08801 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is N08801 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
34
Fatigue Strength, MPa 260
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 390
570
Tensile Strength: Ultimate (UTS), MPa 630
860
Tensile Strength: Yield (Proof), MPa 430
190

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 470
630
Maximum Temperature: Mechanical, °C 810
1090
Melting Completion (Liquidus), °C 1450
1390
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.4
5.5
Embodied Energy, MJ/kg 34
79
Embodied Water, L/kg 110
200

Common Calculations

PREN (Pitting Resistance) 17
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
220
Resilience: Unit (Modulus of Resilience), kJ/m3 460
92
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
30
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 7.2
3.3
Thermal Shock Resistance, points 22
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 13.5 to 15.5
19 to 22
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 78.1 to 85
39.5 to 50.3
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
30 to 34
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.3 to 0.5
0.75 to 1.5