MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. S34565 Stainless Steel

Both S42035 stainless steel and S34565 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 65% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 18
39
Fatigue Strength, MPa 260
400
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 76
88
Shear Modulus, GPa 77
80
Shear Strength, MPa 390
610
Tensile Strength: Ultimate (UTS), MPa 630
900
Tensile Strength: Yield (Proof), MPa 430
470

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 470
450
Maximum Temperature: Mechanical, °C 810
1100
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.4
5.3
Embodied Energy, MJ/kg 34
73
Embodied Water, L/kg 110
210

Common Calculations

PREN (Pitting Resistance) 17
47
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
300
Resilience: Unit (Modulus of Resilience), kJ/m3 460
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 7.2
3.2
Thermal Shock Resistance, points 22
22

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 15.5
23 to 25
Iron (Fe), % 78.1 to 85
43.2 to 51.6
Manganese (Mn), % 0 to 1.0
5.0 to 7.0
Molybdenum (Mo), % 0.2 to 1.2
4.0 to 5.0
Nickel (Ni), % 1.0 to 2.5
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.3 to 0.5
0