MakeItFrom.com
Menu (ESC)

S42035 Stainless Steel vs. S35315 Stainless Steel

Both S42035 stainless steel and S35315 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 54% of their average alloy composition in common.

For each property being compared, the top bar is S42035 stainless steel and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
46
Fatigue Strength, MPa 260
280
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 76
82
Shear Modulus, GPa 77
78
Shear Strength, MPa 390
520
Tensile Strength: Ultimate (UTS), MPa 630
740
Tensile Strength: Yield (Proof), MPa 430
300

Thermal Properties

Latent Heat of Fusion, J/g 280
330
Maximum Temperature: Corrosion, °C 470
450
Maximum Temperature: Mechanical, °C 810
1100
Melting Completion (Liquidus), °C 1450
1370
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.4
5.7
Embodied Energy, MJ/kg 34
81
Embodied Water, L/kg 110
220

Common Calculations

PREN (Pitting Resistance) 17
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
270
Resilience: Unit (Modulus of Resilience), kJ/m3 460
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 7.2
3.1
Thermal Shock Resistance, points 22
17

Alloy Composition

Carbon (C), % 0 to 0.080
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 13.5 to 15.5
24 to 26
Iron (Fe), % 78.1 to 85
33.6 to 40.6
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.2 to 1.2
0
Nickel (Ni), % 1.0 to 2.5
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
1.2 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.3 to 0.5
0