MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. EN 1.8898 Steel

Both S42300 stainless steel and EN 1.8898 steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1
18
Fatigue Strength, MPa 440
330
Impact Strength: V-Notched Charpy, J 13
45
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 650
370
Tensile Strength: Ultimate (UTS), MPa 1100
600
Tensile Strength: Yield (Proof), MPa 850
490

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 750
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
49
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.6
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 110
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 39
21
Strength to Weight: Bending, points 30
20
Thermal Diffusivity, mm2/s 6.8
13
Thermal Shock Resistance, points 40
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.27 to 0.32
0 to 0.16
Chromium (Cr), % 11 to 12
0
Iron (Fe), % 82 to 85.1
96.7 to 99.98
Manganese (Mn), % 1.0 to 1.4
0 to 1.7
Molybdenum (Mo), % 2.5 to 3.0
0 to 0.2
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0.2 to 0.3
0 to 0.12