MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. CC334G Bronze

S42300 stainless steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
210
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 9.1
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 1100
810
Tensile Strength: Yield (Proof), MPa 850
410

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Maximum Temperature: Mechanical, °C 750
240
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 25
41
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.2
3.6
Embodied Energy, MJ/kg 44
59
Embodied Water, L/kg 110
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
38
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 39
28
Strength to Weight: Bending, points 30
24
Thermal Diffusivity, mm2/s 6.8
11
Thermal Shock Resistance, points 40
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0.27 to 0.32
0
Chromium (Cr), % 11 to 12
0
Copper (Cu), % 0
72 to 84.5
Iron (Fe), % 82 to 85.1
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 1.4
0 to 2.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 0 to 0.5
4.0 to 7.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
0 to 0.5