MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. C42600 Brass

S42300 stainless steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 650
280 to 470
Tensile Strength: Ultimate (UTS), MPa 1100
410 to 830
Tensile Strength: Yield (Proof), MPa 850
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Maximum Temperature: Mechanical, °C 750
180
Melting Completion (Liquidus), °C 1470
1030
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 25
110
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
26

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.2
2.9
Embodied Energy, MJ/kg 44
48
Embodied Water, L/kg 110
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 39
13 to 27
Strength to Weight: Bending, points 30
14 to 23
Thermal Diffusivity, mm2/s 6.8
33
Thermal Shock Resistance, points 40
15 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.27 to 0.32
0
Chromium (Cr), % 11 to 12
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 82 to 85.1
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 1.4
0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 0 to 0.5
0.050 to 0.2
Phosphorus (P), % 0 to 0.025
0.020 to 0.050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
2.5 to 4.0
Vanadium (V), % 0.2 to 0.3
0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2