MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. S44626 Stainless Steel

Both S42300 stainless steel and S44626 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.1
23
Fatigue Strength, MPa 440
230
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 650
340
Tensile Strength: Ultimate (UTS), MPa 1100
540
Tensile Strength: Yield (Proof), MPa 850
350

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 380
560
Maximum Temperature: Mechanical, °C 750
1100
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
17
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.9
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 110
160

Common Calculations

PREN (Pitting Resistance) 21
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
300
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 39
19
Strength to Weight: Bending, points 30
19
Thermal Diffusivity, mm2/s 6.8
4.6
Thermal Shock Resistance, points 40
18

Alloy Composition

Carbon (C), % 0.27 to 0.32
0 to 0.060
Chromium (Cr), % 11 to 12
25 to 27
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 82 to 85.1
68.1 to 74.1
Manganese (Mn), % 1.0 to 1.4
0 to 0.75
Molybdenum (Mo), % 2.5 to 3.0
0.75 to 1.5
Nickel (Ni), % 0 to 0.5
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0.2 to 1.0
Vanadium (V), % 0.2 to 0.3
0