MakeItFrom.com
Menu (ESC)

S43932 Stainless Steel vs. AISI 442 Stainless Steel

Both S43932 stainless steel and AISI 442 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common.

For each property being compared, the top bar is S43932 stainless steel and the bottom bar is AISI 442 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
23
Fatigue Strength, MPa 160
210
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 78
83
Shear Modulus, GPa 77
78
Shear Strength, MPa 300
370
Tensile Strength: Ultimate (UTS), MPa 460
580
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 570
420
Maximum Temperature: Mechanical, °C 890
960
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
22
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 40
32
Embodied Water, L/kg 120
130

Common Calculations

PREN (Pitting Resistance) 18
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.3
5.8
Thermal Shock Resistance, points 16
20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 17 to 19
18 to 23
Iron (Fe), % 76.7 to 83
74.1 to 82
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Niobium (Nb), % 0.2 to 0.75
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.040
Titanium (Ti), % 0.2 to 0.75
0