MakeItFrom.com
Menu (ESC)

S43932 Stainless Steel vs. EN 1.4539 Stainless Steel

Both S43932 stainless steel and EN 1.4539 stainless steel are iron alloys. They have 67% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S43932 stainless steel and the bottom bar is EN 1.4539 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
38
Fatigue Strength, MPa 160
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 300
430
Tensile Strength: Ultimate (UTS), MPa 460
630
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 570
420
Maximum Temperature: Mechanical, °C 890
1100
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 23
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.7
5.7
Embodied Energy, MJ/kg 40
78
Embodied Water, L/kg 120
200

Common Calculations

PREN (Pitting Resistance) 18
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.3
3.2
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.020
Chromium (Cr), % 17 to 19
19 to 21
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 76.7 to 83
43.1 to 51.8
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.5
24 to 26
Niobium (Nb), % 0.2 to 0.75
0
Nitrogen (N), % 0 to 0.030
0 to 0.15
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.2 to 0.75
0