MakeItFrom.com
Menu (ESC)

S43932 Stainless Steel vs. EN 1.4887 Stainless Steel

Both S43932 stainless steel and EN 1.4887 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S43932 stainless steel and the bottom bar is EN 1.4887 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
45
Fatigue Strength, MPa 160
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 300
400
Tensile Strength: Ultimate (UTS), MPa 460
580
Tensile Strength: Yield (Proof), MPa 230
300

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Corrosion, °C 570
600
Maximum Temperature: Mechanical, °C 890
1100
Melting Completion (Liquidus), °C 1440
1390
Melting Onset (Solidus), °C 1400
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
39
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.7
Embodied Energy, MJ/kg 40
96
Embodied Water, L/kg 120
210

Common Calculations

PREN (Pitting Resistance) 18
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 96
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 6.3
3.2
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 17 to 19
20 to 23
Iron (Fe), % 76.7 to 83
34.2 to 45
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.5
33 to 37
Niobium (Nb), % 0.2 to 0.75
1.0 to 1.5
Nitrogen (N), % 0 to 0.030
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
1.0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.75
0