MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. AISI 308 Stainless Steel

Both S43940 stainless steel and AISI 308 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 86% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is AISI 308 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
45
Fatigue Strength, MPa 180
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 76
76
Shear Modulus, GPa 77
78
Shear Strength, MPa 310
410
Tensile Strength: Ultimate (UTS), MPa 490
590
Tensile Strength: Yield (Proof), MPa 280
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 540
420
Maximum Temperature: Mechanical, °C 890
990
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
17
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 120
150

Common Calculations

PREN (Pitting Resistance) 18
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
210
Resilience: Unit (Modulus of Resilience), kJ/m3 200
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 6.8
4.1
Thermal Shock Resistance, points 18
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 17.5 to 18.5
19 to 21
Iron (Fe), % 78.2 to 82.1
64.1 to 71
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0
10 to 12
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.1 to 0.6
0