MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. C16200 Copper

S43940 stainless steel belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
2.0 to 56
Fatigue Strength, MPa 180
100 to 210
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 310
190 to 390
Tensile Strength: Ultimate (UTS), MPa 490
240 to 550
Tensile Strength: Yield (Proof), MPa 280
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 890
370
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
360
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
90
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
90

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
41
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 200
10 to 970
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
7.4 to 17
Strength to Weight: Bending, points 18
9.6 to 17
Thermal Diffusivity, mm2/s 6.8
100
Thermal Shock Resistance, points 18
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 18.5
0
Copper (Cu), % 0
98.6 to 99.3
Iron (Fe), % 78.2 to 82.1
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.1 to 0.6
0