MakeItFrom.com
Menu (ESC)

S43940 Stainless Steel vs. C97600 Dairy Metal

S43940 stainless steel belongs to the iron alloys classification, while C97600 dairy metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S43940 stainless steel and the bottom bar is C97600 dairy metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 490
310
Tensile Strength: Yield (Proof), MPa 280
140

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 890
210
Melting Completion (Liquidus), °C 1440
1140
Melting Onset (Solidus), °C 1400
1110
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
22
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.6
4.6
Embodied Energy, MJ/kg 38
69
Embodied Water, L/kg 120
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
29
Resilience: Unit (Modulus of Resilience), kJ/m3 200
85
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
9.8
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 6.8
6.5
Thermal Shock Resistance, points 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 18.5
0
Copper (Cu), % 0
63 to 67
Iron (Fe), % 78.2 to 82.1
0 to 1.5
Lead (Pb), % 0
3.0 to 5.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
19 to 21.5
Niobium (Nb), % 0.3 to 0.6
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
3.5 to 4.0
Titanium (Ti), % 0.1 to 0.6
0
Zinc (Zn), % 0
3.0 to 9.0
Residuals, % 0
0 to 0.3