MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. 6018 Aluminum

S44330 stainless steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 25
9.0 to 9.1
Fatigue Strength, MPa 160
85 to 89
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 280
170 to 180
Tensile Strength: Ultimate (UTS), MPa 440
290 to 300
Tensile Strength: Yield (Proof), MPa 230
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 21
170
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
44
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 13
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 140
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 16
28 to 29
Strength to Weight: Bending, points 17
34 to 35
Thermal Diffusivity, mm2/s 5.7
65
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 20 to 23
0 to 0.1
Copper (Cu), % 0.3 to 0.8
0.15 to 0.4
Iron (Fe), % 72.5 to 79.7
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.8
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15