MakeItFrom.com
Menu (ESC)

S44330 Stainless Steel vs. R56401 Titanium

S44330 stainless steel belongs to the iron alloys classification, while R56401 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44330 stainless steel and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25
9.1
Fatigue Strength, MPa 160
480
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 280
560
Tensile Strength: Ultimate (UTS), MPa 440
940
Tensile Strength: Yield (Proof), MPa 230
850

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 990
340
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1390
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 21
7.1
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
38
Embodied Energy, MJ/kg 40
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
83
Resilience: Unit (Modulus of Resilience), kJ/m3 140
3440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 16
59
Strength to Weight: Bending, points 17
48
Thermal Diffusivity, mm2/s 5.7
2.9
Thermal Shock Resistance, points 16
67

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.025
0 to 0.080
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0.3 to 0.8
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 72.5 to 79.7
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.025
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.8
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5