MakeItFrom.com
Menu (ESC)

S44535 Stainless Steel vs. 357.0 Aluminum

S44535 stainless steel belongs to the iron alloys classification, while 357.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S44535 stainless steel and the bottom bar is 357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
95
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
3.4
Fatigue Strength, MPa 210
76
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 290
200
Tensile Strength: Ultimate (UTS), MPa 450
350
Tensile Strength: Yield (Proof), MPa 290
300

Thermal Properties

Latent Heat of Fusion, J/g 290
500
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1430
620
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
39
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.4
8.0
Embodied Energy, MJ/kg 34
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11
Resilience: Unit (Modulus of Resilience), kJ/m3 200
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 16
38
Strength to Weight: Bending, points 17
43
Thermal Diffusivity, mm2/s 5.6
64
Thermal Shock Resistance, points 15
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.5
91.3 to 93.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 73.2 to 79.6
0 to 0.15
Lanthanum (La), % 0.040 to 0.2
0
Magnesium (Mg), % 0
0.45 to 0.6
Manganese (Mn), % 0.3 to 0.8
0 to 0.030
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.030 to 0.2
0 to 0.2
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15